Distinct conformational states mediate the transport and anion channel properties of the glutamate transporter EAAT-1.
نویسندگان
چکیده
Glutamate transport by the excitatory amino acid transporters (EAATs) is coupled to the co-transport of 3 Na(+), 1 H(+), and the counter-transport of 1 K(+) ion. In addition to coupled ion fluxes, glutamate and Na(+) binding to the transporter activates a thermodynamically uncoupled anion conductance through the transporter. In this study, we have distinguished between these two conductance states of the EAAT-1 transporter using a [2-(trimethylammonium)ethyl]methanethiosulfonate-modified V452C mutant transporter. Glutamate binds to the modified mutant transporter and activates the uncoupled anion conductance but is not transported. The selective alteration of the transport function without altering the anion channel function of the V452C mutant transporter suggests that the two functions are generated by distinct conformational states of the transporter.
منابع مشابه
Glial and Neuronal Glutamate Transporters Differ in the Na+ Requirements for Activation of the Substrate-Independent Anion Conductance
Excitatory amino acid transporters (EAATs) are secondary active transporters of L-glutamate and L- or D-aspartate. These carriers also mediate a thermodynamically uncoupled anion conductance that is gated by Na+ and substrate binding. The activation of the anion channel by binding of Na+ alone, however, has only been demonstrated for mammalian EAAC1 (EAAT3) and EAAT4. To date, no difference has...
متن کاملGlutamate modifies ion conduction and voltage-dependent gating of excitatory amino acid transporter-associated anion channels.
Excitatory amino acid transporters (EAATs) mediate two distinct transport processes, a stoichiometrically coupled transport of glutamate, Na+, K+, and H+, and a pore-mediated anion conductance. We studied the anion conductance associated with two mammalian EAAT isoforms, hEAAT2 and rEAAT4, using whole-cell patch clamp recording on transfected mammalian cells. Both isoforms exhibited constitutiv...
متن کاملSulfhydryl modification of V449C in the glutamate transporter EAAT1 abolishes substrate transport but not the substrate-gated anion conductance.
Excitatory amino acid transporters (EAATs) buffer and remove synaptically released L-glutamate and maintain its concentrations below neurotoxic levels. EAATs also mediate a thermodynamically uncoupled substrate-gated anion conductance that may modulate cell excitability. Here, we demonstrate that modification of a cysteine substituted within a C-terminal domain of EAAT1 abolishes transport in b...
متن کاملThe glutamate-activated anion conductance in excitatory amino acid transporters is gated independently by the individual subunits.
Excitatory amino acid transporters (EAATs) use sodium and potassium gradients to remove glutamate from the synapse and surrounding extracellular space, thereby sustaining efficient synaptic transmission and maintaining extracellular glutamate concentrations at subneurotoxic levels. In addition to sodium-driven glutamate uptake, EAATs also mediate a glutamate-activated chloride conductance via a...
متن کاملEnhancement of substrate-gated Cl- currents via rat glutamate transporter EAAT4 by PMA.
Glutamate transporters (also called excitatory amino acid transporters, EAAT) are important in extracellular homeostasis of glutamate, a major excitatory neurotransmitter. EAAT4, a neuronally expressed EAAT in cerebellum, has a large portion (approximately 95% of the total L-aspartate-induced currents in human EAAT4) of substrate-gated Cl(-) currents, a distinct feature of this EAAT. We cloned ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 277 16 شماره
صفحات -
تاریخ انتشار 2002